Στην Γενική Θεωρία της Σχετικότητας του Einstein που διατυπώθηκε το 1915, η βαρύτητα προσεγγίζεται με όρους της γεωμετρίας παρά ως μια ακόμη δύναμη. Η ύλη καθορίζει πως θα καμπυλωθεί ο χωροχρόνος, και η καμπύλωση του χωροχρόνου καθορίζει πως θα κινηθούν τα σώματα.

Για την ειδική περίπτωση ενός Σύμπαντος το οποίο επεκτείνεται, που το θεωρούμε γεμάτο με ομοιόμορφη πυκνότητα ύλης, και αποτελεί μια καλή προσέγγιση για τη μεγάλη κλίμακα, η γενική σχετικότητα προβλέπει μια διασύνδεση μεταξύ της πυκνότητας του σύμπαντος (συγκριτικά πάντα με την κρίσιμη πυκνότητα) και της γεωμετρίας του.

Ένα σύμπαν με κρίσιμη πυκνότητα (σε κάποιο σταθερό κοσμικό χρόνο) έχει τη γνωστή Ευκλείδεια γεωμετρία, η οποία μας είναι πολύ γνωστή από την καθημερινή μας εμπειρία και από την κλασσική προοπτική που διδάσκεται στη ζωγραφική. Ένα σύμπαν όμως με πυκνότητα μικρότερη ή μεγαλύτερη από την κρίσιμη δεν έχει Ευκλείδεια γεωμετρία -έχει υπερβολική γεωμετρία αν η πυκνότητα είναι μικρότερη από την κρίσιμη και σφαιρική αν η πυκνότητα είναι μεγαλύτερη από την κρίσιμη.

Στις μικρές κλίμακες αυτές οι διαφορετικές γεωμετρίες μοιάζουν πολύ. Ένα μυρμήγκι στην επιφάνεια ενός μήλου θα αντιλαμβανόταν το άμεσο περιβάλλον του ως τελείως επίπεδο και θα δυσκολευόταν να διαπιστώσει ότι το μήλο είναι κυρτό. Παρόμοια αν η καμπυλότητα του Σύμπαντος γινόταν εμφανής μόνο σε κλίμακες αρκετών δισεκατομμυρίων ετών φωτός θα μπορούσαμε να καταλήξουμε στην απατηλή αίσθηση ότι το σύμπαν μας είναι επίπεδο και η γεωμετρία του Ευκλείδεια. Μόνο στις πολύ μεγάλες κλίμακες, – μεγαλύτερες από τη λεγόμενη κλίμακα καμπυλότητας – οι διαφορές μεταξύ των γεωμετριών θα έδιναν σημαντικά αποτελέσματα ώστε να παρατηρηθούν.

Τα τρία παρακάτω σχήματα δείχνουν τις διαφορές που εμφανίζονται κατά την παρατήρηση μακρινών αντικειμένων (προοπτική) στην υπερβολική, την Ευκλείδεια και τη σφαιρική γεωμετρία. Και στις τρεις περιπτώσεις ο χώρος διαιρείται σε όμοια κελιά των οποίων οι ακμές δείχνονται με ράβδους. Οι σφαίρες εντός των κελιών έχουν όμοιο μέγεθος και η αυξανόμενη απόστασή τους παριστάνεται με προοδευτικό χρωματισμό με κόκκινο χρώμα.

Στην Ευκλείδεια γεωμετρία ο χώρος διαιρείται σε κύβους, και κανείς αντιλαμβάνεται τη συνηθισμένη προοπτική: το φαινόμενο γωνιακό μέγεθος των αντικειμένων είναι αντιστρόφως ανάλογο με την απόστασή τους

Στην υπερβολική γεωμετρία ο χώρος γεμίζει μόνο αν υποδιαιρεθεί σε δωδεκάεδρα. Στον ευκλείδειο χώρο ένα τέτοιο γέμισμα είναι αδύνατο. Το μέγεθος των κελιών εδώ είναι της ίδιας τάξης με την κλίμακα καμπυλότητας. Αν και η προοπτική των κοντινών αντικειμένων στον υπερβολοειδή χώρο είναι αρκετά όμοια με αυτή του ευκλείδειου χώρου, το φαινόμενο γωνιακό μέγεθος των μακρινών αντικειμένων μειώνεται πολύ πιο γρήγορα, στην πραγματικότητα εκθετικά όπως φαίνεται και στην εικόνα.

Ο σφαιρικός χώρος που φαίνεται στην ανωτέρω εικόνα, γεμίζει επίσης με κανονικά δωδεκάεδρα. Η γεωμετρία του σφαιρικού χώρου μοιάζει με την επιφάνεια της γης εκτός από το γεγονός ότι στην περίπτωσή μας θεωρούμε μια τρισδιάστατη σφαίρα αντί για μια δισδιάστατη. Η προοπτική στον σφαιρικό χώρο είναι ιδιόμορφη. Καθώς αυξάνεται η απόσταση, τα αντικείμενα πρώτα εμφανίζονται να μικραίνουν (όπως στον Ευκλείδειο χώρο), φτάνουν ένα ελάχιστο, και τελικά εμφανίζονται να μεγαλώνουν ξανά με την αύξηση της απόστασης. Η συμπεριφορά αυτή οφείλεται στην δυνατότητα της σφαιρικής γεωμετρίας να προκαλεί εστίαση των ακτίνων.

[Τα τρία παραπάνω σχήματα κατασκευάστηκαν από τους  Stuart Levy του Πανεπιστημίου Urbana-Champaign του Illinois,  και Tamara Munzer του Πανεπιστημίου Stanford για το περιοδικό Scientific American.]

 

Advertisements