Στη Φυσική, ο χωροχρόνος ή χωροχρονικό συνεχές είναι το μαθηματικό μοντέλο που ενώνει τον χώρο και τον χρόνο σε μία συνέχεια. Ο χωροχρόνος συνήθως ερμηνεύεται ως συνδυασμός του ευκλείδειου χώρου τριών διαστάσεων με τον χρόνο ως μια επιπρόσθετη διάσταση, οπότε προκύπτει ένα πολύπτυχο μόρφωμα (manifold) τεσσάρων διαστάσεων. Η τέταρτη διάσταση, αυτή του χρόνου, είναι διαφορετική από τις άλλες τρεις που αφορούν μήκος στον ευκλείδειο χώρο.

Στην Κλασική μηχανική σε χαμηλές (μη σχετικιστικές ταχύτητες,δηλαδή πολύ κάτω απο την ταχύτητα του φωτός) ταχύτητες, η χρήση της ευκλείδειας γεωμετρίας είναι κατάλληλη καθώς ο χρόνος μπορεί να παραλείπεται από τη μαθηματική περιγραφή των υπό εξέταση συστημάτων, αφού είναι ο ίδιος παντού για τα αντικείμενα και τον παρατηρητή. Όταν όμως μελετούμε σχετικιστικές κινήσεις των σωμάτων, όταν δηλαδή έχουμε ταχύτητες που προσεγγίζουν την ταχύτητα του φωτός, τότε ο χρόνος δεν μπορεί να παραλειφθεί από τη μαθηματική περιγραφή και το σημείο στον χώρο ανάγεται πια σε γεγονός στον χωροχρόνο. Όταν μελετούμε σχετικιστικά φαινόμενα, προσπαθώντας να τα κατανοήσουμε με ευκλείδεια γεωμετρία σε χώρο τριών διαστάσεων, ο χρόνος αλλοιώνεται καθώς παίζει ρόλο η ταχύτητα του σώματος που μελετάται ως προς τον παρατηρητή και η επίδραση της βαρύτητας φαίνεται να επιβραδύνει το «πέρασμα του χρόνου». Κοιτώντας σε τέσσερις διαστάσεις, απλά λέμε πως ο χωροχρόνος «καμπυλώνει».

Ο χωροχρόνος με τέσσερις διαστάσεις καλύπτει επαρκώς την περιγραφή των βαρυτικών αλληλεπιδράσεων των σωμάτων στο σύμπαν που παρατηρούμε και βιώνουμε. Μια θεωρία που προσπαθεί να ενοποιήσει όλες τις δυνάμεις όμως χρειάζεται περισσότερες διαστάσεις για να περιγράψει ενοποιημένα και τις δυνάμεις πλέον της βαρύτητας, όπως τις δυνάμεις που κυριαρχούν σε υποατομικό επίπεδο. Έτσι έχουμε για παράδειγμα τη Θεωρία-M η οποία προσδίδει στο χωροχρονικό συνεχές 11 διαστάσεις.

 

Ο χωρόχρονος είναι ανεξάρτητος του παρατηρητή. Παρ’ όλα αυτά, για την περιγραφή των φυσικών φαινομένων ο κάθε παρατηρητής επιλέγει ένα κατάλληλο σύστημα συντεταγμένων. Τα γεγονότα καθορίζονται από τέσσερις πραγματικούς αριθμούς σε κάθε σύστημα συντεταγμένων.

Είναι πολύ δύσκολο να φανταστεί κανείς ότι ο χρόνος δεν είναι ο ίδιος ανάλογα με το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση του. Αυτό ωστόσο έχει σε μεγάλο βαθμό αποδειχθεί πειραματικά, ειδικότερα στους επιταχυντές σωματιδίων του CERN.

Ο χρόνος εξαρτάται από το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση του κι επομένως δεν είναι απόλυτος. Το ίδιο ισχύει για τον χώρο. Το μήκος ενός αντικειμένου μπορεί να είναι διαφορετικό ανάλογα με το σύστημα αναφοράς της μέτρησης.

Μόνο ο χωροχρόνος ως ενοποιημένη έννοια, που είναι μαθηματικά χώρος του Μινκόφσκι, είναι απόλυτος, ενώ οι συνιστώσες του, ο χώρος και ο χρόνος, αποτελούν πλευρές του που εξαρτώνται από τον παρατηρητή (το σύστημα αναφοράς).

Η σχέση μεταξύ της μέτρησης χώρου και χρόνου που δίνεται από την παγκόσμια σταθερά c (την ταχύτητα του φωτός στο κενό), επιτρέπει την περιγραφή μιας απόστασης d με μέτρο το χρόνο: d = ct, t όντας ο χρόνος που χρειάζεται το φως για να διασχίσει την απόσταση d. Ο Ήλιος απέχει 150 εκατομμύρια χιλιόμετρα, δηλαδή 8 λεπτά φωτός από τη Γη. Με τον όρο λεπτά φωτός, γίνεται λόγος για μια μέτρηση του χρόνου που πολλαπλασιάζεται με το c, κι έτσι εξάγεται μια μέτρηση απόστασης, στην περίπτωση αυτή, σε χιλιόμετρα. Μ’ άλλα λόγια, χάρη στο c μονάδες χρόνου μετατρέπονται σε μονάδες απόστασης. Χιλιόμετρα και λεπτά φωτός είναι επομένως δυο μονάδες μέτρησης της απόστασης.

Αυτό που ενοποιεί χώρο και χρόνο στην ίδια εξίσωση είναι ότι η μέτρηση του χρόνου μπορεί να μετασχηματιστεί σε μέτρηση απόστασης (πολλαπλασιάζοντας το t, που εκφράζεται σε μονάδες χρόνου, με το c), και το t μπορεί έτσι να ταυτιστεί με τις τρεις άλλες συντεταγμένες απόστασης σε μια εξίσωση όπου όλες οι μετρήσεις γίνονται με μονάδες απόστασης. Από αυτήν την άποψη θα μπορούσε κανείς να πει ότι ο χρόνος είναι χώρος!

Σχηματοποιώντας τον χώρο σε δύο διαστάσεις, το ξεδίπλωμα του χρόνου μας δίνει την αίσθηση του χωροχρόνου σε τρεις διαστάσεις.

Advertisements